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Supplement Material 

 

1. Flow reactor - pyrolysis 

 

 

 

 

 

Figure S1:  FTIR spectrum obtained during nitromethane pyrolysis. 



 

Figure S2: Integrated mass flux analysis for the pyrolysis of CH3NO2/Ar in flow reactor shown 

in Figure 7. Based on the N-atom. CH3NO2 5 % / Ar 95 % (on a mole basis) at 5 Torr (= 0.666 

kPa) ), 1200 K at 30 % CH3NO2 consumption. 



 

Figure S3: Integrated mass flux analysis for the pyrolysis CH3NO2/Ar in flow reactor shown 

in Figure 7. Based on the C-atom. CH3NO2 5 % / Ar 95 % (on a mole basis) at 5 Torr (= 0.666 

kPa), 1200 K at 30 % CH3NO2 consumption. 



 

 

Figure S4: Pyrolysis of CH3NO2 5 % / Ar 95 % in flow reactor at different pressures and 

residence times. Symbols: experimental data from [1], dashed lines: this model. Simulation are 

done using the temperature profile. 

 

 



Figure S5: Pyrolysis of CH3NO2 5 % / Ar 95 % in flow reactor at different pressures and 

residence times. Symbols: experimental data from [1], dashed lines: this model. Simulation are 

performed imposing the temperature profile. Legend information same as in Figure S4. 

 

Figure S6: Pyrolysis of CH3NO2 5 % / Ar 95 % in flow reactor at different pressures and 

residence times. Symbols: experimental data from [1], dashed lines: this model. Simulation are 

performed imposing the temperature profile. Legend information same as in Figure S4. 

  



 

2. Jet stirred reactor 

 

Figure S7: Integrated mass flux analysis during the pyrolysis of CH3NO2 1 % /He 99 % in 

JSR at 1.07 bar, τ = 2.0 s for the condition shown in Figure 8. Based on N-atom. 



 

Figure S8: Species profile comparison during pyrolysis of CH3NO2 1 % / He 99 % in flow 

reactor and JSR for the condition shown in Figure 3 and Figure 8 respectively. Red line: flow 

reactor, Blue line: JSR. 



 

Figure S9: Oxidation of CH3NO2 1 % / O2 3.125 % /Ar at 1 atm, ϕ = 0.4, τ = 2.0 s in a jet 

stirred reactor. Symbols: experimental data from Weng et al. [2]; dashed lines: this model.  

 



 

Figure S10: Oxidation of CH3NO2 1 % / O2 3.125 % /Ar at 1 atm, ϕ = 0.4, τ = 2.0 s in a jet 

stirred reactor for condition in Figure S9. Symbols: experimental data from Weng et al. [2]; 

dashed lines: this model.  



 

Figure S11: Oxidation of CH3NO2 1 % / O2 3.125 % /Ar at 1 atm, ϕ = 0.4, τ = 2.0 s in a jet 

stirred reactor for condition in Figure S9. Symbols: experimental data from Weng et al. [2]; 

dashed lines: this model.  

  



 

3. Burner stabilized flame 

 

Figure S12: Temperature profile for the CH3NO2/O2/Ar premixed burner stabilized flame at 

4.666 kPa, T = 298 K, ϕ = 1.5 shown in Figure 15. Symbols: experiment measurement from 

[3], lines: calculation solving the energy conservation equation. Dash lines: with radiation 

factor (RF) 0.5 (standard setting), solid lines: with radiation factor (RF) 4.0.  



 

Figure S13: Speciation of premixed CH3NO2/O2/Ar burner stabilized flame at 4.666 kPa, T = 

298 K, ϕ = 2.0. Symbols: experiments from Zhang et al. [3]; dashed lines: prediction imposing 

the experimental temperature profile. 

 

 



 

Figure S14: Integrated mass flux analysis for CH3NO2/O2/Ar burner stabilized flame at 

4.666 kPa, T = 298 K, ϕ = 2.0 sown in Figure S13. Based on the C-atom.  

  



 

Figure S15: Integrated mass flux analysis for CH3NO2/O2/Ar burner stabilized flame at 

4.666 kPa, T = 298 K, ϕ = 2.0 shown in Figure S13. Based on the N-atom. 



 

Figure S16: Speciation of premixed CH3NO2/O2/Ar burner stabilized flame at 4.666 kPa, T = 

298 K, ϕ = 1.0. Symbols: experiments from Zhang et al. [3]; dashed lines: prediction imposing 

the experimental temperature profile. 



 

 

Figure S17: Integrated mass flux analysis for CH3NO2/O2/Ar burner stabilized flame at 

4.666 kPa, T = 298 K, ϕ = 1.0 shown in Figure S16. Based on the C-atom. 

 



 

Figure S18: Integrated mass flux analysis for CH3NO2/O2/Ar burner stabilized flame at 

4.666 kPa, T = 298 K, ϕ = 1.0 shown in Figure S16. Based on the N-atom. 

  



4. Shock tube - Ignition delay time and pyrolysis 

 

 

 

Figure S19: Ignition delay time of CH3NO2/O2/Ar. Symbols: experiment from Mathieu et al. 

2016 [4]; lines: this model. Mix: means mixture number, which is same as in [4]. 

 



 

Figure S20: Ignition delay times of CH3NO2/O2/N2. Symbols: experiment from Nauclér et al. 

2016 [5]; lines: this model. Mix: means mixture number, which is same as in [5]. 

 

 

Figure S21: Speciation during the CH3NO2/Ar pyrolysis in shock tube, symbols: experiments 

from [6] (left), [7] (right); lines: this model. 

  



5. Laminar flame speed 

 

Figure S22: Laminar flame speeds of CH3NO2/air at 423 K and three different pressures (1−3 

bar). Symbols: experiment from [8]; lines: this model. 

 

Figure S23: Laminar flame speed of CH3NO2/air at 1 atm and three different temperatures. 

Symbols: experiment from [9]; lines: this model. 

  



6. CH3NO2(+M)⇋CH3+NO2(+M) rate constant comparison  

 

Figure S24: Rate constant comparison of reaction CH3NO2(+M)⇋CH3+NO2(+M) from 

different sources: Glänzer and Troe [6], Hsu and Lin [7], Seljeskog [10], Zhu et al. [11], 

Annesley et al. [12], Vlasov et al. [13], Petrov et al. [14]. 
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