On the implications of nitromethane - NO_x chemistry interactions for combustion processes

Krishna Prasad Shrestha^{1,*}, Lars Seidel², Thomas Zeuch³, Gladys Moréac^{4,5}, Philippe Dagaut⁵, and Fabian Mauss¹

- Thermodynamics and Thermal Process Engineering, Brandenburg University of Technology, Siemens-Halske-Ring 8, 03046 Cottbus, Germany
- 2. LOGE Deutschland GmbH, Burger Chaussee 25, 03044 Cottbus, Germany
- 3. Institut für Physikalische Chemie, Georg-AugustUniversität Göttingen, Göttingen, Germany
- 4. RENAULT SAS, 78084 Guyancourt, France
- 5. ICARE, Centre National de la Recherche Scientifique (CNRS-INSIS), Orléans, France

*Corresponding author: Krishna Prasad Shrestha

e-mail: shrestha@b-tu.de

Supplementary Material

https://doi.org/10.1016/j.fuel.2020.119861

The detailed reaction mechanism provided as the supplement to this work includes both hydrocarbon and nitrogen chemistry. The mechanism also considers ammonia (NH₃) as a fuel. In addition to fuel/NO_x system mechanism can also be used to simulate the fuel blend with NH₃.

1. CH₄ oxidation doped with NO and NO₂

Figure S1: Oxidation of CH₄/O₂/Ar doped with 500 ppm of NO in a JSR at $\phi = 0.5$ and 1.07 bar. Symbols: experimental data from [1], Dashed lines: with CH₃NO₂ chemistry, Solid lines: without CH₃NO₂ chemistry.

Figure S2: Oxidation of CH₄/O₂/Ar doped with 500 ppm of NO in a JSR at $\phi = 1.0$ and 1.07 bar. Symbols: experimental data from [1], Dashed lines: with CH₃NO₂ chemistry, Solid lines: without CH₃NO₂ chemistry.

Figure S3: Oxidation of CH₄/O₂/Ar doped with 500 ppm of NO in a JSR at $\phi = 2.0$ and 1.07 bar. Symbols: experimental data from [1], Dashed lines: with CH₃NO₂ chemistry, Solid lines: without CH₃NO₂ chemistry.

Figure S4: Oxidation of CH₄/O₂/Ar doped with 400 ppm of NO₂ in a JSR at $\phi = 0.5$ and 1.07 bar. Symbols: experimental data from [1], Dashed lines: with CH₃NO₂ chemistry, Solid lines: without CH₃NO₂ chemistry.

Figure S5: Oxidation of CH₄/O₂/Ar doped with 400 ppm of NO₂ in a JSR at $\phi = 1.0$ and 1.07 bar. Symbols: experimental data from [1], Dashed lines: with CH₃NO₂ chemistry, Solid lines: without CH₃NO₂ chemistry.

Figure S6: Oxidation of CH₄/O₂/Ar doped with 400 ppm of NO₂ in a JSR at $\phi = 2.0$ and 1.07 bar. Symbols: experimental data from [1], Dashed lines: with CH₃NO₂ chemistry, Solid lines: without CH₃NO₂ chemistry.

2. n-Heptane oxidation doped with and without NO

Figure S7: Reaction path analysis for n-C7H16/O2/N2/NO (500 ppm) based on C-atom at 740 K, 10 atm, $\phi = 1.0$ and $\tau = 1.0$ s.

Figure S8: HONO, HO₂ and OH concentration profiles during Oxidation of $n-C_7H_{16}/O_2/N_2$ in JSR doped with (50 and 500 ppm NO) and without NO at 10 atm, $\phi = 1.0$, $\tau = 1.0$ s. Solid lines: prediction without CH₃NO₂ chemistry, dashed lines: prediction with CH₃NO₂ chemistry. Left figure (50 ppm NO), right figure (500 ppm of NO)

Figure S9: Oxidation of n-C₇H₁₆/O₂/N₂ in JSR doped with 50 ppm of NO at 10 atm, $\tau = 1.0$ s and different ϕ . Symbols: measurements from [2], Solid lines: prediction without CH₃NO₂ chemistry, dashed lines: prediction with CH₃NO₂ chemistry.

Figure S10: OH, HO₂ and CH₃NO₂ mole fraction profile comparison of n-heptane oxidation and methane oxidation in JSR. Solid lines: initial condition are same as in Figure 1 and 5, dashed lines: for n-heptane oxidation in JSR at $\phi = 0.5$ and doped with 200 ppm of NO to have one to one comparison with methane.

Figure S11: Reaction path analysis for CH₄ oxidation in JSR for the condition shown in Figure 1 (doped with NO) based on N-atom at 900 K.

References

- Y. Song, L. Marrodán, N. Vin, O. Herbinet, E. Assaf, C. Fittschen, A. Stagni, T. Faravelli,
 M.U. Alzueta, F. Battin-Leclerc, The sensitizing effects of NO 2 and NO on methane low
 temperature oxidation in a jet stirred reactor, Proc. Combust. Inst. 37 (2019) 667–675.
 doi:10.1016/j.proci.2018.06.115.
- [2] G. Moréac, Experimental study and modelling of chemical interactions between gases residual and fresh gas in the homogeneous spontaneous ignition gasoline engines, PhD Thesis, University of Orléans, 2003. https://tel.archives-ouvertes.fr/tel-02961685/.